

CMS pixel detector upgrade

Valeria Radicci University of Kansas

- LHC machine upgrade and implications for the CMS tracking system
- Inefficiencies of the present CMS pixel detector for LHC ugrade
- Status of the R&D activities at PSI
- Possible scenarios for the intermediate detector upgrade
- Conclusions

Motivation for an LHC Luminosity Upgrade

- LHC accelerator will provide p-p interactions at an energy of 14TeV and a peak luminosity of 10³⁴ cm⁻² s⁻¹, ~ 100 fb⁻¹/year.
- after a few of years of running at design luminosity whatever new physics is observed, its understanding will require higher statistics and higher energies.
- LHC upgrade is foreseen
- No other facility in the world can achieve this in a foreseeable future.

European Strategy for Particle Physics:

"... A subsequent major luminosity up-grade (SLHC), motivated by physics results and operation experience, will be enabled by focused R&D; to this end, R&D for machine and detectors has to be vigorously pursued now and centrally organized towards a luminosity up-grade by around 2015."

LHC Luminosisty Upgrade plan

Nominal Peak Luminosity:

- 2009 → 2013 $L_{PEAK} = 1 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- Phase 1 (Intermediate upgrade)
 L_{PEAK} = 2x10³⁴ cm⁻² s⁻¹
- Phase 2 (SLHC)
 L_{PEAK} = 8x10³⁴ cm⁻² s⁻¹

Beam luminosity →

- → Occupancy of the read out electronics
- → Radiation damage of the components

LHC detectors were not defined for SLHC luminosity!

LHC Luminosisty Upgrade plan

Full luminosity

LHC ~20 interactions/bx

SLHC 300-400 interactions/bx

Occupancy (read out electronic)

Inner pixel layer: already close to the limit (i.e. data loss ~4%)

Inner pixel layer: new readout chip

Radiation damage on sensors

Inner pixel layer: needs replacement every two years

Tracker: will become inefficient. New design!

A more realistic scenario

For Phase 1: replace the sensors and may upgrade the chip

For Phase 2: the whole pixel detector will require upgrading

For both Phases boundary conditions:

- Integrated Lumi' achieve similar performance
 - no increase (ev. reduce) the material budget
 - all existing services must be reused (cables, fibres, cooling)

Tracker barrel strawman designs for Phase 2

A. Tricomi CMS SLHC Upgrade Workshop, 21 May, 2008

Strawman A Geometry:

Perturbation of current tracking system
4 Inner pixel layers, 2 strixel + 2 short strip
layers (TIB), 2-strixel + 4 short strip layers (TOB)
Strixel 1,2 (TIB) 100μm x 600μm strixel size
Strixel 3,4 (TOB) 100μm x 1200μm strixel size

Strawman B Geometry:

Design radically different from current tracker:

3 Inner Pixel layers, Short strips Super-layers, each with two doublet layers (integrated tracking/ triggering layers);

Silicon Sensor Limitations

r > 50 cm:

- mainly neutrons:
 - Cheap p+ on n

20cm < r < 50 cm:

- performance limited by space charge:
 - Collect e- (n+/n or n+/p)
 - CAN be improved by MCz, **DOFZ** material.

8cm < r < 20 cm:

- performance limited by trapping:
 - Collect e- (n+/n or n+/p)
 - NOT improved by material (Mcz, DOFZ...)

4cm < r < 8 cm:

- Present limit of readout 6000e-(new chip design)
- frequent replacement or new solutions.

7/20 2008

Data loss mechanism

High rate tests and simulation of the Pixel ROC have shown inefficiency of the data transfer mainly due to *buffer limitation* and the *dead time* of the ROC read out while

transferring data to the TBM.

For Luminosity: 1 x 10³⁴ cm⁻²sec⁻¹

Radii = 11 cm / 7 cm / 4 cm layer

Total data loss @ L1A =100kHz

0.8%

1.2%

3.8%

This is suitable for LHC, improvements needed for inner layers for SLHC

Possible solutions:

- Doubling the buffer size
- and/or redesign TBM for parallel
 ROC readout
- (R. Horisberger, SLHC meeting at CERN 21/05/08)

Material budget contributions

White: Barrel and Forward

- Silicon sensors
- C-fibre mechanical structure
- Cooling pipes

Magenta: Supply tube

- Very complex, expensive PCB endflange prints with ~800 plugs!
- High density kapton signal cables
- DOH AOH + PCB mother board

Green: Electrics

Pixel08, FNAL 22-26 september 2008

Sensor R&D for High Doses

Actual CMS Barrel Pixel Sensor design:

- n+ on n substrate
- 150x100µm pixel
- distance between pixel implants 20µm (Gap)
- DOFZ (standard FZ material enriched with oxygen on wafer)
- inter-pixel isolation moderated p spray
- bef. irra. junction and guard ring on back side
- aft. inversion junction on the pixel side

R&D plan:

- (I) try to determine the ultimate limit of the detection efficiency and loss of the signal charge by trapping
- (II) Investigate slightly modified sensor geometry (Gap = 20, $30\mu m$) with **capaitance measurements**
- (III) Characterization of n+ on p, DOFz and Mcz before and after irradiation.

Sensor R&D for High Doses

Last irradiation campaign of CMS barrel pixel sensor during 2007:

- 24GeV protons at CERN
 - 4 fluences up to 5.1x10¹⁵ neq/cm²
 - 33 samples (Gap20 and Gap30)
- 300MeV pions at PSI
 - 3 fluences up to 6.2x10¹⁴ neq/cm²
 - 14 samples (Gap20 and Gap30)

Charge Collection Efficiency Measurement:

Sr90 source Cold box ~-10°C

PIRE students at PSI and T. Rohe

Sensor R&D for High Doses

- ROC calibration and charge measurement without any problem up to 1.1x10¹⁵ neq/cm²
- @ 1.1x10¹⁵ neq/cm² @ T=10⁰C
 - Charge > 10000 e⁻ (CCE~50%)
 - V_{dep} ~ 450V
- @ the last two fluences the calibration of the ROC settings gave problems (standard procedure optimized for unirradiated chip): further investigation

10000e- is still fine **but** operating with $V_{dep} = 450V$

- → no benefit charge sharing (single pixel clusters)
- → degradation in spatial resolution

Idea for saving the material budget at high eta

Existing System in CMS Pixel Detector

New Concept

Beat Meier, PSI. TWEPP Conference September 2008

(I) Study the electrical cable properties

(II) Expand the squared blocks

Idea for saving the material budget at high eta

Optimize the comunication link between the detector and the optical system using a long cable for the transmission of analog/digital signals

- AOHs, DOHs, Mother boards, PLL... further back
 - without impedance breaks (no end flange print)
 - remove kapton cable: expensive, length < 40cm, can only bend one plane

Further Requirements:

- minimal material budget → micro twisted pair (unshielded)
- minimal power consumption and noise → differential signal
- Minimal number of cables → serial data link
- 160 or 320 Mbit/s (4x or 8x LHC clock)
- Up to 2 m cable length

Soulution: (B.Meier and R. Horisberger): μ -twisted pair cable of d=125 μ m of Copper Cladded Aluminum (CCA). Ordered 9Km from Elektrisola (CH).

Test Chip layout

Design of a first test chip (by B. Meier and PSI Chip Design Core Team)

Size: 2 x 2 mm

- Technology: 250 nm CMOS IBM
- radiation hardness design
- design time was 4 weeks
 CERN MPW submitted in April 2008
 - Delivered end of July
- Basic components implemented:

Differential drivers
Differential receivers
PLL
ADC

Test System

R&D plan:

- (I) Cable characterization:
 - impedence
 - signal loss
 - signal quality
 - bir error reate
 - cross talk
 - high frequency transmission
- (II) New digital protocol implementation:
 - test PLL clock recovery
 - test PLL clock multiplier
 - test of the ADC
 - implement the protocol

Beat Meier, PSI TWEPP Conference September 2008

Cable characterization

125 µm Al core + Cu Impedance 29 ± 2 ohms power loss 2m cable 50%

- ATLC simulation to determine the impedance variation vs the distance between the cables →
 - 1.3 Ohms per 1 µm distance variation
- SPICE simulation to determine the parasitic effects of the set up.

PIRE students at PSI and B.Meier

First results on 2m cable

Cross talk studies:

 $V_{diff} = 9 \text{ mV} @ 80 \text{ Mbit/s}$

parallel line signal (asynchronous)

 $V_{diff} = 56 \text{ mV}$

Beat Meier

Very encouraging results:

Small bit error rate @ low V_{diff} No Crosstalk bidirectional link is possible!

Further measurements:

- cross talk between parallel lines up to 16 lines
- transmission test @ 320MHz
- Test longer cable
- Test μ-tw cable drive a pixel barrel module

Scenarios for the intermediate upgrade

<u>(</u>	<u>Option</u>	Layer/Radii	<u>Modules</u>	Cooling	Pixel ROC	Readout	<u>Power</u>
as 2008	0	4, 7, 11cm	768	C ₆ F ₁₄	PS46 as now	analog 40MHz	as now
	1	4, 7, 11cm	768	C ₆ F ₁₄	2x buffers	analog 40MHz	as now
	2	4, 7, 11cm	768	CO ₂	2x buffers	analog 40MHz	as now
	3	4, 7, 11cm	768	CO ₂	2x buffers	analog 40MHz μ -tw-pairs	as now
	4	4, 7, 11cm	768	CO ₂	2xbuffer, ADC 160MHz serial	digital 320MHz μ -tw-pairs	as now
	5	4, 7, 11, 16cm	1428	CO ₂	2xbuffer, ADC 160MHz serial	digital 640 MHz μ -tw-pairs	DC-DC new PS

(R. Horisberger, SLHC meeting at CERN 21/05/08)

Conclusions:

- We have to replace pixel for phase 1 using the existing services :
 - Option 0: No change:
 - → inefficiency problem at 4cm
 - Option 1: <u>Double the buffer size:</u>
 - → is possible with the present module mechanics
 - → no R&D needed but careful verifications
 - Option 3: μ-tw-pair cable and Analog signal, 40MHz
 - → no change in the TBM and the ROC
 - → important reduction of the material budget
 - Option 4: μ-tw-pair cable and digital read out @ 320MHz
 - → ROC and TBM modifications
 - → New digital protocol implementation

backup

Data loss possible solutions

skip

Present system: 12 timestamp buffers, 32 data buffers

For 2013 upgrade: Improve rate capability:

(1) doubling the buffer size (24/64)

- 0.25mm technology just possible

- No R&D but carefully verification with high rate test beam

new ROC size

R. Horisberger

(2) redesign only JBM for parallel ROC readout

Scenarios for the intermidiate upgrade

BPIX Option 0:

Replace the current pixel system with identical pixel modules.

Detector designed in 1997 for Luminosity of $1x10^{34}$ will develop substantial inefficiency for 4cm layer at $2x10^{34} \rightarrow Data Loss$

BPIX Option 1:

Same Option 0 and Double the read out buffer size.

Current material budget is acceptable in eta region 0 but could be improved, especially in eta region 1.4-2.3

BPIX Option 3 or 4:

CO₂ cooling, high speed link with μtw pairs cable